We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(- x + \tan{\left(x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(x + 2 \sin{\left(x \right)}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{- x + \tan{\left(x \right)}}{x + 2 \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- x + \tan{\left(x \right)}\right)}{\frac{d}{d x} \left(x + 2 \sin{\left(x \right)}\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\tan^{2}{\left(x \right)}}{2 \cos{\left(x \right)} + 1}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \tan^{2}{\left(x \right)}}{\frac{d}{d x} \left(2 \cos{\left(x \right)} + 1\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\left(2 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)}}{2 \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(- \frac{\tan{\left(x \right)}}{\sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(- \tan{\left(x \right)}\right)}{\frac{d}{d x} \sin{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{- \tan^{2}{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{- \tan^{2}{\left(x \right)} - 1}{\cos{\left(x \right)}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)