Mister Exam

Limit of the function x5

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  x5
x5->0+  
$$\lim_{x_{5} \to 0^+} x_{5}$$
Limit(x5, x5, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x5→0, -oo, +oo, 1
$$\lim_{x_{5} \to 0^-} x_{5} = 0$$
More at x5→0 from the left
$$\lim_{x_{5} \to 0^+} x_{5} = 0$$
$$\lim_{x_{5} \to \infty} x_{5} = \infty$$
More at x5→oo
$$\lim_{x_{5} \to 1^-} x_{5} = 1$$
More at x5→1 from the left
$$\lim_{x_{5} \to 1^+} x_{5} = 1$$
More at x5→1 from the right
$$\lim_{x_{5} \to -\infty} x_{5} = -\infty$$
More at x5→-oo
One‐sided limits [src]
 lim  x5
x5->0+  
$$\lim_{x_{5} \to 0^+} x_{5}$$
0
$$0$$
= 8.5563925773619e-33
 lim  x5
x5->0-  
$$\lim_{x_{5} \to 0^-} x_{5}$$
0
$$0$$
= -8.5563925773619e-33
= -8.5563925773619e-33
Numerical answer [src]
8.5563925773619e-33
8.5563925773619e-33
The graph
Limit of the function x5