Mister Exam

Other calculators:


2^(-x)*log(2*x)

Limit of the function 2^(-x)*log(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -x         \
 lim \2  *log(2*x)/
x->oo              
$$\lim_{x \to \infty}\left(2^{- x} \log{\left(2 x \right)}\right)$$
Limit(log(2*x)/2^x, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty} \log{\left(2 x \right)} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} 2^{x} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(2^{- x} \log{\left(2 x \right)}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(2 x \right)}}{\frac{d}{d x} 2^{x}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{2^{- x}}{x \log{\left(2 \right)}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{2^{- x}}{x \log{\left(2 \right)}}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(2^{- x} \log{\left(2 x \right)}\right) = 0$$
$$\lim_{x \to 0^-}\left(2^{- x} \log{\left(2 x \right)}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2^{- x} \log{\left(2 x \right)}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2^{- x} \log{\left(2 x \right)}\right) = \frac{\log{\left(2 \right)}}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2^{- x} \log{\left(2 x \right)}\right) = \frac{\log{\left(2 \right)}}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2^{- x} \log{\left(2 x \right)}\right) = \infty$$
More at x→-oo
The graph
Limit of the function 2^(-x)*log(2*x)