Mister Exam

Other calculators:


asin(5*x)/tan(3*x)

Limit of the function asin(5*x)/tan(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /asin(5*x)\
 lim |---------|
x->0+\ tan(3*x)/
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right)$$
Limit(asin(5*x)/tan(3*x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \operatorname{asin}{\left(5 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} \tan{\left(3 x \right)} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \operatorname{asin}{\left(5 x \right)}}{\frac{d}{d x} \tan{\left(3 x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5}{\sqrt{1 - 25 x^{2}} \left(3 \tan^{2}{\left(3 x \right)} + 3\right)}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5}{3 \tan^{2}{\left(3 x \right)} + 3}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5}{3 \tan^{2}{\left(3 x \right)} + 3}\right)$$
=
$$\frac{5}{3}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /asin(5*x)\
 lim |---------|
x->0+\ tan(3*x)/
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right)$$
5/3
$$\frac{5}{3}$$
= 1.66666666666667
     /asin(5*x)\
 lim |---------|
x->0-\ tan(3*x)/
$$\lim_{x \to 0^-}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right)$$
5/3
$$\frac{5}{3}$$
= 1.66666666666667
= 1.66666666666667
Rapid solution [src]
5/3
$$\frac{5}{3}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right) = \frac{5}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right) = \frac{5}{3}$$
$$\lim_{x \to \infty}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right) = \frac{\operatorname{asin}{\left(5 \right)}}{\tan{\left(3 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right) = \frac{\operatorname{asin}{\left(5 \right)}}{\tan{\left(3 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\operatorname{asin}{\left(5 x \right)}}{\tan{\left(3 x \right)}}\right)$$
More at x→-oo
Numerical answer [src]
1.66666666666667
1.66666666666667
The graph
Limit of the function asin(5*x)/tan(3*x)