Mister Exam

Other calculators:

Limit of the function tan(k*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /tan(k*x)\
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right)$$
Limit(tan(k*x)/x, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right) = \lim_{x \to 0^+}\left(\frac{\sin{\left(k x \right)}}{x \cos{\left(k x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(k x \right)}}{x}\right) \lim_{x \to 0^+} \frac{1}{\cos{\left(k x \right)}} = \lim_{x \to 0^+}\left(\frac{\sin{\left(k x \right)}}{x}\right)$$
Do replacement
$$u = k x$$
then
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(k x \right)}}{x}\right) = \lim_{u \to 0^+}\left(\frac{k \sin{\left(u \right)}}{u}\right)$$
=
$$k \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right) = k$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \tan{\left(k x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right)$$
=
$$k$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 0 time(s)
One‐sided limits [src]
     /tan(k*x)\
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right)$$
k
$$k$$
     /tan(k*x)\
 lim |--------|
x->0-\   x    /
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(k x \right)}}{x}\right)$$
k
$$k$$
k
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\tan{\left(k x \right)}}{x}\right) = k$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\tan{\left(k x \right)}}{x}\right) = k$$
$$\lim_{x \to \infty}\left(\frac{\tan{\left(k x \right)}}{x}\right) = \tilde{\infty} k \tan^{2}{\left(\tilde{\infty} k \right)} + \tilde{\infty} k$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\tan{\left(k x \right)}}{x}\right) = \tan{\left(k \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\tan{\left(k x \right)}}{x}\right) = \tan{\left(k \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\tan{\left(k x \right)}}{x}\right) = \tilde{\infty} k \tan^{2}{\left(\tilde{\infty} k \right)} + \tilde{\infty} k$$
More at x→-oo
Rapid solution [src]
k
$$k$$