Mister Exam

Other calculators:


2*cos(2*x)

Limit of the function 2*cos(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
  lim   (2*cos(2*x))
   -pi              
x->----+            
    12              
$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^+}\left(2 \cos{\left(2 x \right)}\right)$$
Limit(2*cos(2*x), x, (-pi)/12)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
  lim   (2*cos(2*x))
   -pi              
x->----+            
    12              
$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^+}\left(2 \cos{\left(2 x \right)}\right)$$
  ___
\/ 3 
$$\sqrt{3}$$
= 1.73205080756888
  lim   (2*cos(2*x))
   -pi              
x->-----            
    12              
$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^-}\left(2 \cos{\left(2 x \right)}\right)$$
  ___
\/ 3 
$$\sqrt{3}$$
= 1.73205080756888
= 1.73205080756888
Rapid solution [src]
  ___
\/ 3 
$$\sqrt{3}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^-}\left(2 \cos{\left(2 x \right)}\right) = \sqrt{3}$$
More at x→(-pi)/12 from the left
$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^+}\left(2 \cos{\left(2 x \right)}\right) = \sqrt{3}$$
$$\lim_{x \to \infty}\left(2 \cos{\left(2 x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(2 \cos{\left(2 x \right)}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(2 \cos{\left(2 x \right)}\right) = 2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(2 \cos{\left(2 x \right)}\right) = 2 \cos{\left(2 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(2 \cos{\left(2 x \right)}\right) = 2 \cos{\left(2 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(2 \cos{\left(2 x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→-oo
Numerical answer [src]
1.73205080756888
1.73205080756888
The graph
Limit of the function 2*cos(2*x)