$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^-}\left(2 \cos{\left(2 x \right)}\right) = \sqrt{3}$$
More at x→(-pi)/12 from the left$$\lim_{x \to \frac{\left(-1\right) \pi}{12}^+}\left(2 \cos{\left(2 x \right)}\right) = \sqrt{3}$$
$$\lim_{x \to \infty}\left(2 \cos{\left(2 x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→oo$$\lim_{x \to 0^-}\left(2 \cos{\left(2 x \right)}\right) = 2$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(2 \cos{\left(2 x \right)}\right) = 2$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(2 \cos{\left(2 x \right)}\right) = 2 \cos{\left(2 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(2 \cos{\left(2 x \right)}\right) = 2 \cos{\left(2 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(2 \cos{\left(2 x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→-oo