Mister Exam

Other calculators:


3*x/(2+x^2)

Limit of the function 3*x/(2+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / 3*x  \
 lim  |------|
x->-1+|     2|
      \2 + x /
$$\lim_{x \to -1^+}\left(\frac{3 x}{x^{2} + 2}\right)$$
Limit((3*x)/(2 + x^2), x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-1
$$-1$$
One‐sided limits [src]
      / 3*x  \
 lim  |------|
x->-1+|     2|
      \2 + x /
$$\lim_{x \to -1^+}\left(\frac{3 x}{x^{2} + 2}\right)$$
-1
$$-1$$
= -1.0
      / 3*x  \
 lim  |------|
x->-1-|     2|
      \2 + x /
$$\lim_{x \to -1^-}\left(\frac{3 x}{x^{2} + 2}\right)$$
-1
$$-1$$
= -1.0
= -1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-}\left(\frac{3 x}{x^{2} + 2}\right) = -1$$
More at x→-1 from the left
$$\lim_{x \to -1^+}\left(\frac{3 x}{x^{2} + 2}\right) = -1$$
$$\lim_{x \to \infty}\left(\frac{3 x}{x^{2} + 2}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{3 x}{x^{2} + 2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{3 x}{x^{2} + 2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{3 x}{x^{2} + 2}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{3 x}{x^{2} + 2}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{3 x}{x^{2} + 2}\right) = 0$$
More at x→-oo
Numerical answer [src]
-1.0
-1.0
The graph
Limit of the function 3*x/(2+x^2)