Mister Exam

Other calculators:


tan(x)

Limit of the function tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  tan(x)
   pi       
x->--+      
   2        
$$\lim_{x \to \frac{\pi}{2}^+} \tan{\left(x \right)}$$
Limit(tan(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{2}^-} \tan{\left(x \right)} = -\infty$$
More at x→pi/2 from the left
$$\lim_{x \to \frac{\pi}{2}^+} \tan{\left(x \right)} = -\infty$$
$$\lim_{x \to \infty} \tan{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-} \tan{\left(x \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \tan{\left(x \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \tan{\left(x \right)} = \tan{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \tan{\left(x \right)} = \tan{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \tan{\left(x \right)} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim  tan(x)
   pi       
x->--+      
   2        
$$\lim_{x \to \frac{\pi}{2}^+} \tan{\left(x \right)}$$
-oo
$$-\infty$$
= -150.997792488028
 lim  tan(x)
   pi       
x->---      
   2        
$$\lim_{x \to \frac{\pi}{2}^-} \tan{\left(x \right)}$$
oo
$$\infty$$
= 150.997792488025
= 150.997792488025
Numerical answer [src]
-150.997792488028
-150.997792488028
The graph
Limit of the function tan(x)