Mister Exam

Other calculators:


tan(x)

Limit of the function tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  tan(x)
   pi       
x->--+      
   2        
limxπ2+tan(x)\lim_{x \to \frac{\pi}{2}^+} \tan{\left(x \right)}
Limit(tan(x), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.0-250250
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limxπ2tan(x)=\lim_{x \to \frac{\pi}{2}^-} \tan{\left(x \right)} = -\infty
More at x→pi/2 from the left
limxπ2+tan(x)=\lim_{x \to \frac{\pi}{2}^+} \tan{\left(x \right)} = -\infty
limxtan(x)=,\lim_{x \to \infty} \tan{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx0tan(x)=0\lim_{x \to 0^-} \tan{\left(x \right)} = 0
More at x→0 from the left
limx0+tan(x)=0\lim_{x \to 0^+} \tan{\left(x \right)} = 0
More at x→0 from the right
limx1tan(x)=tan(1)\lim_{x \to 1^-} \tan{\left(x \right)} = \tan{\left(1 \right)}
More at x→1 from the left
limx1+tan(x)=tan(1)\lim_{x \to 1^+} \tan{\left(x \right)} = \tan{\left(1 \right)}
More at x→1 from the right
limxtan(x)=,\lim_{x \to -\infty} \tan{\left(x \right)} = \left\langle -\infty, \infty\right\rangle
More at x→-oo
One‐sided limits [src]
 lim  tan(x)
   pi       
x->--+      
   2        
limxπ2+tan(x)\lim_{x \to \frac{\pi}{2}^+} \tan{\left(x \right)}
-oo
-\infty
= -150.997792488028
 lim  tan(x)
   pi       
x->---      
   2        
limxπ2tan(x)\lim_{x \to \frac{\pi}{2}^-} \tan{\left(x \right)}
oo
\infty
= 150.997792488025
= 150.997792488025
Numerical answer [src]
-150.997792488028
-150.997792488028
The graph
Limit of the function tan(x)