Mister Exam

Limit of the function factorial(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim x!
x->3+  
limx3+x!\lim_{x \to 3^+} x!
Limit(factorial(x), x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
One‐sided limits [src]
 lim x!
x->3+  
limx3+x!\lim_{x \to 3^+} x!
6
66
= 6.0
 lim x!
x->3-  
limx3x!\lim_{x \to 3^-} x!
6
66
= 6.0
= 6.0
Rapid solution [src]
6
66
Other limits x→0, -oo, +oo, 1
limx3x!=6\lim_{x \to 3^-} x! = 6
More at x→3 from the left
limx3+x!=6\lim_{x \to 3^+} x! = 6
limxx!=\lim_{x \to \infty} x! = \infty
More at x→oo
limx0x!=1\lim_{x \to 0^-} x! = 1
More at x→0 from the left
limx0+x!=1\lim_{x \to 0^+} x! = 1
More at x→0 from the right
limx1x!=1\lim_{x \to 1^-} x! = 1
More at x→1 from the left
limx1+x!=1\lim_{x \to 1^+} x! = 1
More at x→1 from the right
limxx!=()!\lim_{x \to -\infty} x! = \left(-\infty\right)!
More at x→-oo
Numerical answer [src]
6.0
6.0