Mister Exam

Other calculators:


sqrt(tan(x))

Limit of the function sqrt(tan(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       ________
 lim \/ tan(x) 
x->oo          
limxtan(x)\lim_{x \to \infty} \sqrt{\tan{\left(x \right)}}
Limit(sqrt(tan(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010010
Rapid solution [src]
       ________
 lim \/ tan(x) 
x->oo          
limxtan(x)\lim_{x \to \infty} \sqrt{\tan{\left(x \right)}}
Other limits x→0, -oo, +oo, 1
limxtan(x)\lim_{x \to \infty} \sqrt{\tan{\left(x \right)}}
limx0tan(x)=0\lim_{x \to 0^-} \sqrt{\tan{\left(x \right)}} = 0
More at x→0 from the left
limx0+tan(x)=0\lim_{x \to 0^+} \sqrt{\tan{\left(x \right)}} = 0
More at x→0 from the right
limx1tan(x)=tan(1)\lim_{x \to 1^-} \sqrt{\tan{\left(x \right)}} = \sqrt{\tan{\left(1 \right)}}
More at x→1 from the left
limx1+tan(x)=tan(1)\lim_{x \to 1^+} \sqrt{\tan{\left(x \right)}} = \sqrt{\tan{\left(1 \right)}}
More at x→1 from the right
limxtan(x)\lim_{x \to -\infty} \sqrt{\tan{\left(x \right)}}
More at x→-oo
The graph
Limit of the function sqrt(tan(x))