Mister Exam

Other calculators:


4*x/(1+x)

Limit of the function 4*x/(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 4*x \
 lim |-----|
x->0+\1 + x/
limx0+(4xx+1)\lim_{x \to 0^+}\left(\frac{4 x}{x + 1}\right)
Limit((4*x)/(1 + x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-100100
One‐sided limits [src]
     / 4*x \
 lim |-----|
x->0+\1 + x/
limx0+(4xx+1)\lim_{x \to 0^+}\left(\frac{4 x}{x + 1}\right)
0
00
= 2.93727144208228e-28
     / 4*x \
 lim |-----|
x->0-\1 + x/
limx0(4xx+1)\lim_{x \to 0^-}\left(\frac{4 x}{x + 1}\right)
0
00
= -2.38544570312941e-29
= -2.38544570312941e-29
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx0(4xx+1)=0\lim_{x \to 0^-}\left(\frac{4 x}{x + 1}\right) = 0
More at x→0 from the left
limx0+(4xx+1)=0\lim_{x \to 0^+}\left(\frac{4 x}{x + 1}\right) = 0
limx(4xx+1)=4\lim_{x \to \infty}\left(\frac{4 x}{x + 1}\right) = 4
More at x→oo
limx1(4xx+1)=2\lim_{x \to 1^-}\left(\frac{4 x}{x + 1}\right) = 2
More at x→1 from the left
limx1+(4xx+1)=2\lim_{x \to 1^+}\left(\frac{4 x}{x + 1}\right) = 2
More at x→1 from the right
limx(4xx+1)=4\lim_{x \to -\infty}\left(\frac{4 x}{x + 1}\right) = 4
More at x→-oo
Numerical answer [src]
2.93727144208228e-28
2.93727144208228e-28
The graph
Limit of the function 4*x/(1+x)