Mister Exam

Other calculators:


4*x/(1+x)

Limit of the function 4*x/(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 4*x \
 lim |-----|
x->0+\1 + x/
$$\lim_{x \to 0^+}\left(\frac{4 x}{x + 1}\right)$$
Limit((4*x)/(1 + x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     / 4*x \
 lim |-----|
x->0+\1 + x/
$$\lim_{x \to 0^+}\left(\frac{4 x}{x + 1}\right)$$
0
$$0$$
= 2.93727144208228e-28
     / 4*x \
 lim |-----|
x->0-\1 + x/
$$\lim_{x \to 0^-}\left(\frac{4 x}{x + 1}\right)$$
0
$$0$$
= -2.38544570312941e-29
= -2.38544570312941e-29
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{4 x}{x + 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{4 x}{x + 1}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{4 x}{x + 1}\right) = 4$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{4 x}{x + 1}\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{4 x}{x + 1}\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{4 x}{x + 1}\right) = 4$$
More at x→-oo
Numerical answer [src]
2.93727144208228e-28
2.93727144208228e-28
The graph
Limit of the function 4*x/(1+x)