Mister Exam

Graphing y = sqrt(tan(x))

v

The graph:

from to

Intersection points:

does show?

Piecewise:

The solution

You have entered [src]
         ________
f(x) = \/ tan(x) 
f(x)=tan(x)f{\left(x \right)} = \sqrt{\tan{\left(x \right)}}
f = sqrt(tan(x))
The graph of the function
01234-6-5-4-3-2-10100
The points of intersection with the X-axis coordinate
Graph of the function intersects the axis X at f = 0
so we need to solve the equation:
tan(x)=0\sqrt{\tan{\left(x \right)}} = 0
Solve this equation
The points of intersection with the axis X:

Analytical solution
x1=0x_{1} = 0
Numerical solution
x1=0x_{1} = 0
The points of intersection with the Y axis coordinate
The graph crosses Y axis when x equals 0:
substitute x = 0 to sqrt(tan(x)).
tan(0)\sqrt{\tan{\left(0 \right)}}
The result:
f(0)=0f{\left(0 \right)} = 0
The point:
(0, 0)
Extrema of the function
In order to find the extrema, we need to solve the equation
ddxf(x)=0\frac{d}{d x} f{\left(x \right)} = 0
(the derivative equals zero),
and the roots of this equation are the extrema of this function:
ddxf(x)=\frac{d}{d x} f{\left(x \right)} =
the first derivative
tan2(x)2+12tan(x)=0\frac{\frac{\tan^{2}{\left(x \right)}}{2} + \frac{1}{2}}{\sqrt{\tan{\left(x \right)}}} = 0
Solve this equation
Solutions are not found,
function may have no extrema
Inflection points
Let's find the inflection points, we'll need to solve the equation for this
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left(x \right)} = 0
(the second derivative equals zero),
the roots of this equation will be the inflection points for the specified function graph:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left(x \right)} =
the second derivative
(4tan(x)tan2(x)+1tan32(x))(tan2(x)4+14)=0\left(4 \sqrt{\tan{\left(x \right)}} - \frac{\tan^{2}{\left(x \right)} + 1}{\tan^{\frac{3}{2}}{\left(x \right)}}\right) \left(\frac{\tan^{2}{\left(x \right)}}{4} + \frac{1}{4}\right) = 0
Solve this equation
The roots of this equation
x1=π6x_{1} = - \frac{\pi}{6}
x2=π6x_{2} = \frac{\pi}{6}

Сonvexity and concavity intervals:
Let’s find the intervals where the function is convex or concave, for this look at the behaviour of the function at the inflection points:
Concave at the intervals
[π6,)\left[\frac{\pi}{6}, \infty\right)
Convex at the intervals
(,π6]\left(-\infty, \frac{\pi}{6}\right]
Horizontal asymptotes
Let’s find horizontal asymptotes with help of the limits of this function at x->+oo and x->-oo
limxtan(x)=limxtan(x)\lim_{x \to -\infty} \sqrt{\tan{\left(x \right)}} = \lim_{x \to -\infty} \sqrt{\tan{\left(x \right)}}
Let's take the limit
so,
equation of the horizontal asymptote on the left:
y=limxtan(x)y = \lim_{x \to -\infty} \sqrt{\tan{\left(x \right)}}
limxtan(x)=limxtan(x)\lim_{x \to \infty} \sqrt{\tan{\left(x \right)}} = \lim_{x \to \infty} \sqrt{\tan{\left(x \right)}}
Let's take the limit
so,
equation of the horizontal asymptote on the right:
y=limxtan(x)y = \lim_{x \to \infty} \sqrt{\tan{\left(x \right)}}
Inclined asymptotes
Inclined asymptote can be found by calculating the limit of sqrt(tan(x)), divided by x at x->+oo and x ->-oo
limx(tan(x)x)=limx(tan(x)x)\lim_{x \to -\infty}\left(\frac{\sqrt{\tan{\left(x \right)}}}{x}\right) = \lim_{x \to -\infty}\left(\frac{\sqrt{\tan{\left(x \right)}}}{x}\right)
Let's take the limit
so,
inclined asymptote equation on the left:
y=xlimx(tan(x)x)y = x \lim_{x \to -\infty}\left(\frac{\sqrt{\tan{\left(x \right)}}}{x}\right)
limx(tan(x)x)=limx(tan(x)x)\lim_{x \to \infty}\left(\frac{\sqrt{\tan{\left(x \right)}}}{x}\right) = \lim_{x \to \infty}\left(\frac{\sqrt{\tan{\left(x \right)}}}{x}\right)
Let's take the limit
so,
inclined asymptote equation on the right:
y=xlimx(tan(x)x)y = x \lim_{x \to \infty}\left(\frac{\sqrt{\tan{\left(x \right)}}}{x}\right)
Even and odd functions
Let's check, whether the function even or odd by using relations f = f(-x) и f = -f(-x).
So, check:
tan(x)=tan(x)\sqrt{\tan{\left(x \right)}} = \sqrt{- \tan{\left(x \right)}}
- No
tan(x)=tan(x)\sqrt{\tan{\left(x \right)}} = - \sqrt{- \tan{\left(x \right)}}
- No
so, the function
not is
neither even, nor odd
The graph
Graphing y = sqrt(tan(x))