Mister Exam

Other calculators:


sin(x)*tan(x)

Limit of the function sin(x)*tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (sin(x)*tan(x))
x->0+               
limx0+(sin(x)tan(x))\lim_{x \to 0^+}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right)
Limit(sin(x)*tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-5050
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx0(sin(x)tan(x))=0\lim_{x \to 0^-}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(sin(x)tan(x))=0\lim_{x \to 0^+}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right) = 0
limx(sin(x)tan(x))\lim_{x \to \infty}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right)
More at x→oo
limx1(sin(x)tan(x))=sin(1)tan(1)\lim_{x \to 1^-}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right) = \sin{\left(1 \right)} \tan{\left(1 \right)}
More at x→1 from the left
limx1+(sin(x)tan(x))=sin(1)tan(1)\lim_{x \to 1^+}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right) = \sin{\left(1 \right)} \tan{\left(1 \right)}
More at x→1 from the right
limx(sin(x)tan(x))\lim_{x \to -\infty}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right)
More at x→-oo
One‐sided limits [src]
 lim (sin(x)*tan(x))
x->0+               
limx0+(sin(x)tan(x))\lim_{x \to 0^+}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right)
0
00
= -1.69245705342017e-30
 lim (sin(x)*tan(x))
x->0-               
limx0(sin(x)tan(x))\lim_{x \to 0^-}\left(\sin{\left(x \right)} \tan{\left(x \right)}\right)
0
00
= -1.69245705342017e-30
= -1.69245705342017e-30
Numerical answer [src]
-1.69245705342017e-30
-1.69245705342017e-30
The graph
Limit of the function sin(x)*tan(x)