Mister Exam

Other calculators:


sin(x)*tan(x/2)

Limit of the function sin(x)*tan(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /          /x\\
 lim  |sin(x)*tan|-||
x->pi+\          \2//
$$\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)$$
Limit(sin(x)*tan(x/2), x, pi)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to \pi^+} \sin{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to \pi^+} \frac{1}{\tan{\left(\frac{x}{2} \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\frac{d}{d x} \sin{\left(x \right)}}{\frac{d}{d x} \frac{1}{\tan{\left(\frac{x}{2} \right)}}}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\cos{\left(x \right)} \tan^{2}{\left(\frac{x}{2} \right)}}{- \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}}\right)$$
=
$$\lim_{x \to \pi^+}\left(\frac{\cos{\left(x \right)} \tan^{2}{\left(\frac{x}{2} \right)}}{- \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}}\right)$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
      /          /x\\
 lim  |sin(x)*tan|-||
x->pi+\          \2//
$$\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)$$
2
$$2$$
= 2.0
      /          /x\\
 lim  |sin(x)*tan|-||
x->pi-\          \2//
$$\lim_{x \to \pi^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)$$
2
$$2$$
= 2.0
= 2.0
Rapid solution [src]
2
$$2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 2$$
More at x→pi from the left
$$\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 2$$
$$\lim_{x \to \infty}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = \sin{\left(1 \right)} \tan{\left(\frac{1}{2} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = \sin{\left(1 \right)} \tan{\left(\frac{1}{2} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)$$
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function sin(x)*tan(x/2)