Mister Exam

Other calculators:


sin(x)*tan(x/2)

Limit of the function sin(x)*tan(x/2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /          /x\\
 lim  |sin(x)*tan|-||
x->pi+\          \2//
limxπ+(sin(x)tan(x2))\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)
Limit(sin(x)*tan(x/2), x, pi)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limxπ+sin(x)=0\lim_{x \to \pi^+} \sin{\left(x \right)} = 0
and limit for the denominator is
limxπ+1tan(x2)=0\lim_{x \to \pi^+} \frac{1}{\tan{\left(\frac{x}{2} \right)}} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limxπ+(sin(x)tan(x2))\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)
=
limxπ+(ddxsin(x)ddx1tan(x2))\lim_{x \to \pi^+}\left(\frac{\frac{d}{d x} \sin{\left(x \right)}}{\frac{d}{d x} \frac{1}{\tan{\left(\frac{x}{2} \right)}}}\right)
=
limxπ+(cos(x)tan2(x2)tan2(x2)212)\lim_{x \to \pi^+}\left(\frac{\cos{\left(x \right)} \tan^{2}{\left(\frac{x}{2} \right)}}{- \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}}\right)
=
limxπ+(cos(x)tan2(x2)tan2(x2)212)\lim_{x \to \pi^+}\left(\frac{\cos{\left(x \right)} \tan^{2}{\left(\frac{x}{2} \right)}}{- \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}}\right)
=
22
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
0123456-6-5-4-3-2-104
One‐sided limits [src]
      /          /x\\
 lim  |sin(x)*tan|-||
x->pi+\          \2//
limxπ+(sin(x)tan(x2))\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)
2
22
= 2.0
      /          /x\\
 lim  |sin(x)*tan|-||
x->pi-\          \2//
limxπ(sin(x)tan(x2))\lim_{x \to \pi^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)
2
22
= 2.0
= 2.0
Rapid solution [src]
2
22
Other limits x→0, -oo, +oo, 1
limxπ(sin(x)tan(x2))=2\lim_{x \to \pi^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 2
More at x→pi from the left
limxπ+(sin(x)tan(x2))=2\lim_{x \to \pi^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 2
limx(sin(x)tan(x2))\lim_{x \to \infty}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)
More at x→oo
limx0(sin(x)tan(x2))=0\lim_{x \to 0^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 0
More at x→0 from the left
limx0+(sin(x)tan(x2))=0\lim_{x \to 0^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = 0
More at x→0 from the right
limx1(sin(x)tan(x2))=sin(1)tan(12)\lim_{x \to 1^-}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = \sin{\left(1 \right)} \tan{\left(\frac{1}{2} \right)}
More at x→1 from the left
limx1+(sin(x)tan(x2))=sin(1)tan(12)\lim_{x \to 1^+}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right) = \sin{\left(1 \right)} \tan{\left(\frac{1}{2} \right)}
More at x→1 from the right
limx(sin(x)tan(x2))\lim_{x \to -\infty}\left(\sin{\left(x \right)} \tan{\left(\frac{x}{2} \right)}\right)
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function sin(x)*tan(x/2)