$$\lim_{x \to 0^-} \left(1 - \log{\left(7 x \right)}\right)^{7 x} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(1 - \log{\left(7 x \right)}\right)^{7 x} = 1$$
$$\lim_{x \to \infty} \left(1 - \log{\left(7 x \right)}\right)^{7 x} = 0$$
More at x→oo$$\lim_{x \to 1^-} \left(1 - \log{\left(7 x \right)}\right)^{7 x} = - 21 \log{\left(7 \right)}^{5} - 35 \log{\left(7 \right)}^{3} - \log{\left(7 \right)}^{7} - 7 \log{\left(7 \right)} + 1 + 21 \log{\left(7 \right)}^{2} + 7 \log{\left(7 \right)}^{6} + 35 \log{\left(7 \right)}^{4}$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(1 - \log{\left(7 x \right)}\right)^{7 x} = - 21 \log{\left(7 \right)}^{5} - 35 \log{\left(7 \right)}^{3} - \log{\left(7 \right)}^{7} - 7 \log{\left(7 \right)} + 1 + 21 \log{\left(7 \right)}^{2} + 7 \log{\left(7 \right)}^{6} + 35 \log{\left(7 \right)}^{4}$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(1 - \log{\left(7 x \right)}\right)^{7 x} = 0$$
More at x→-oo