Mister Exam

Other calculators:


(1/sin(x))^tan(x)

Limit of the function (1/sin(x))^tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             tan(x)
     /  1   \      
 lim |------|      
x->0+\sin(x)/      
$$\lim_{x \to 0^+} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
Limit((1/sin(x))^tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
             tan(x)
     /  1   \      
 lim |------|      
x->0+\sin(x)/      
$$\lim_{x \to 0^+} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
1
$$1$$
= 1.00163490275634
             tan(x)
     /  1   \      
 lim |------|      
x->0-\sin(x)/      
$$\lim_{x \to 0^-} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
1
$$1$$
= (0.998071492041113 - 0.000766527748721653j)
= (0.998071492041113 - 0.000766527748721653j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = 1$$
$$\lim_{x \to \infty} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
More at x→oo
$$\lim_{x \to 1^-} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = \sin^{- \tan{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = \sin^{- \tan{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
More at x→-oo
Numerical answer [src]
1.00163490275634
1.00163490275634
The graph
Limit of the function (1/sin(x))^tan(x)