$$\lim_{x \to 0^-} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = 1$$
$$\lim_{x \to \infty} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
More at x→oo$$\lim_{x \to 1^-} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = \sin^{- \tan{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}} = \sin^{- \tan{\left(1 \right)}}{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \left(\frac{1}{\sin{\left(x \right)}}\right)^{\tan{\left(x \right)}}$$
More at x→-oo