Mister Exam

Other calculators:


sin(3*x)/3

Limit of the function sin(3*x)/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /sin(3*x)\
 lim  |--------|
x->-oo\   3    /
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(3 x \right)}}{3}\right)$$
Limit(sin(3*x)/3, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
<-1/3, 1/3>
$$\left\langle - \frac{1}{3}, \frac{1}{3}\right\rangle$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(3 x \right)}}{3}\right) = \left\langle - \frac{1}{3}, \frac{1}{3}\right\rangle$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(3 x \right)}}{3}\right) = \left\langle - \frac{1}{3}, \frac{1}{3}\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(3 x \right)}}{3}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(3 x \right)}}{3}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(3 x \right)}}{3}\right) = \frac{\sin{\left(3 \right)}}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(3 x \right)}}{3}\right) = \frac{\sin{\left(3 \right)}}{3}$$
More at x→1 from the right
The graph
Limit of the function sin(3*x)/3