Mister Exam

Other calculators:


2*sin(3*x)/(3*x)

Limit of the function 2*sin(3*x)/(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /2*sin(3*x)\
 lim |----------|
x->0+\   3*x    /
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right)$$
Limit((2*sin(3*x))/((3*x)), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right)$$
Do replacement
$$u = 3 x$$
then
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = \lim_{u \to 0^+}\left(\frac{2 \sin{\left(u \right)}}{u}\right)$$
=
$$2 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = 2$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(3 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(\frac{3 x}{2}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(3 x \right)}}{\frac{d}{d x} \frac{3 x}{2}}\right)$$
=
$$\lim_{x \to 0^+}\left(2 \cos{\left(3 x \right)}\right)$$
=
$$\lim_{x \to 0^+} 2$$
=
$$\lim_{x \to 0^+} 2$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
2
$$2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = 2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = 2$$
$$\lim_{x \to \infty}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = \frac{2 \sin{\left(3 \right)}}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = \frac{2 \sin{\left(3 \right)}}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /2*sin(3*x)\
 lim |----------|
x->0+\   3*x    /
$$\lim_{x \to 0^+}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right)$$
2
$$2$$
= 2.0
     /2*sin(3*x)\
 lim |----------|
x->0-\   3*x    /
$$\lim_{x \to 0^-}\left(\frac{2 \sin{\left(3 x \right)}}{3 x}\right)$$
2
$$2$$
= 2.0
= 2.0
Numerical answer [src]
2.0
2.0
The graph
Limit of the function 2*sin(3*x)/(3*x)