Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-1+cos(x))/x^2
Limit of (3*x+14*x^2)/(1+2*x+7*x^2)
Limit of (-6*tan(x)+2*tan(3*x))/(-atan(3*x)+3*atan(x))
Limit of (5+x)/(-5+x^2+4*x)
Integral of d{x}
:
1+x^2
Derivative of
:
1+x^2
Graphing y =
:
1+x^2
Identical expressions
one +x^ two
1 plus x squared
one plus x to the power of two
1+x2
1+x²
1+x to the power of 2
Similar expressions
1-x^2
(1-x^2)/(1+x^2)
-1+x^2-x^3+2*x
(-1+x^2)/(-2+x+x^2)
(-1+x^2)/(-10+2*x)
Limit of the function
/
1+x^2
Limit of the function 1+x^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ lim \1 + x / x->oo
$$\lim_{x \to \infty}\left(x^{2} + 1\right)$$
Limit(1 + x^2, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{2} + 1\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to \infty}\left(x^{2} + 1\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x^{2}}}{\frac{1}{x^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x^{2}}}{\frac{1}{x^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{u^{2} + 1}{u^{2}}\right)$$
=
$$\frac{0^{2} + 1}{0} = \infty$$
The final answer:
$$\lim_{x \to \infty}\left(x^{2} + 1\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{2} + 1\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{2} + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{2} + 1\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{2} + 1\right) = 2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{2} + 1\right) = 2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{2} + 1\right) = \infty$$
More at x→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph