We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to \frac{1}{2}^+} \log{\left(2 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to \frac{1}{2}^+} \frac{1}{\log{\left(2 x - 1 \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \frac{1}{2}^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\frac{d}{d x} \log{\left(2 x \right)}}{\frac{d}{d x} \frac{1}{\log{\left(2 x - 1 \right)}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(- \frac{\left(2 x - 1\right) \log{\left(2 x - 1 \right)}^{2}}{2 x}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\frac{d}{d x} \left(- \frac{2 x - 1}{2 x}\right)}{\frac{d}{d x} \frac{1}{\log{\left(2 x - 1 \right)}^{2}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(- \frac{\left(- \frac{1}{x} + \frac{2 x - 1}{2 x^{2}}\right) \left(2 x - 1\right) \log{\left(2 x - 1 \right)}^{3}}{4}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\frac{d}{d x} \left(- \frac{\left(2 x - 1\right) \log{\left(2 x - 1 \right)}^{3}}{4}\right)}{\frac{d}{d x} \frac{1}{- \frac{1}{x} + \frac{2 x - 1}{2 x^{2}}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\left(- \frac{1}{x} + \frac{2 x - 1}{2 x^{2}}\right)^{2} \left(- \frac{\log{\left(2 x - 1 \right)}^{3}}{2} - \frac{3 \log{\left(2 x - 1 \right)}^{2}}{2}\right)}{- \frac{2}{x^{2}} + \frac{2 x - 1}{x^{3}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\log{\left(2 x - 1 \right)}^{3}}{4} + \frac{3 \log{\left(2 x - 1 \right)}^{2}}{4}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\log{\left(2 x - 1 \right)}^{3}}{4} + \frac{3 \log{\left(2 x - 1 \right)}^{2}}{4}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)