Mister Exam

Other calculators:


log(2*x)*log(-1+2*x)

Limit of the function log(2*x)*log(-1+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
  lim  (log(2*x)*log(-1 + 2*x))
x->1/2+                        
$$\lim_{x \to \frac{1}{2}^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right)$$
Limit(log(2*x)*log(-1 + 2*x), x, 1/2)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to \frac{1}{2}^+} \log{\left(2 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to \frac{1}{2}^+} \frac{1}{\log{\left(2 x - 1 \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \frac{1}{2}^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\frac{d}{d x} \log{\left(2 x \right)}}{\frac{d}{d x} \frac{1}{\log{\left(2 x - 1 \right)}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(- \frac{\left(2 x - 1\right) \log{\left(2 x - 1 \right)}^{2}}{2 x}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\frac{d}{d x} \left(- \frac{2 x - 1}{2 x}\right)}{\frac{d}{d x} \frac{1}{\log{\left(2 x - 1 \right)}^{2}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(- \frac{\left(- \frac{1}{x} + \frac{2 x - 1}{2 x^{2}}\right) \left(2 x - 1\right) \log{\left(2 x - 1 \right)}^{3}}{4}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\frac{d}{d x} \left(- \frac{\left(2 x - 1\right) \log{\left(2 x - 1 \right)}^{3}}{4}\right)}{\frac{d}{d x} \frac{1}{- \frac{1}{x} + \frac{2 x - 1}{2 x^{2}}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\left(- \frac{1}{x} + \frac{2 x - 1}{2 x^{2}}\right)^{2} \left(- \frac{\log{\left(2 x - 1 \right)}^{3}}{2} - \frac{3 \log{\left(2 x - 1 \right)}^{2}}{2}\right)}{- \frac{2}{x^{2}} + \frac{2 x - 1}{x^{3}}}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\log{\left(2 x - 1 \right)}^{3}}{4} + \frac{3 \log{\left(2 x - 1 \right)}^{2}}{4}\right)$$
=
$$\lim_{x \to \frac{1}{2}^+}\left(\frac{\log{\left(2 x - 1 \right)}^{3}}{4} + \frac{3 \log{\left(2 x - 1 \right)}^{2}}{4}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 3 time(s)
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
  lim  (log(2*x)*log(-1 + 2*x))
x->1/2+                        
$$\lim_{x \to \frac{1}{2}^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right)$$
0
$$0$$
= -0.00315612534445693
  lim  (log(2*x)*log(-1 + 2*x))
x->1/2-                        
$$\lim_{x \to \frac{1}{2}^-}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right)$$
0
$$0$$
= (0.000515070744372563 + 1.00253195903717e-44j)
= (0.000515070744372563 + 1.00253195903717e-44j)
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{1}{2}^-}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = 0$$
More at x→1/2 from the left
$$\lim_{x \to \frac{1}{2}^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = - \infty i$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = - \infty i$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\log{\left(2 x \right)} \log{\left(2 x - 1 \right)}\right) = \infty$$
More at x→-oo
Numerical answer [src]
-0.00315612534445693
-0.00315612534445693
The graph
Limit of the function log(2*x)*log(-1+2*x)