Mister Exam

Other calculators:


sin(5*x)/(7*pi*x)

You entered:

sin(5*x)/(7*pi*x)

What you mean?

Limit of the function sin(5*x)/(7*pi*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(5*x)\
 lim |--------|
x->0+\ 7*pi*x /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right)$$
Limit(sin(5*x)/((7*pi*x)), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right)$$
Do replacement
$$u = 5 x$$
then
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = \lim_{u \to 0^+}\left(\frac{5 \sin{\left(u \right)}}{7 \pi u}\right)$$
=
$$\frac{5 \lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)}{7 \pi}$$
The limit
$$\lim_{u \to 0^+}\left(\frac{\sin{\left(u \right)}}{u}\right)$$
is first remarkable limit, is equal to 1.

The final answer:
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = \frac{5}{7 \pi}$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+} \sin{\left(5 x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(7 \pi x\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(5 x \right)}}{\frac{d}{d x} 7 \pi x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5 \cos{\left(5 x \right)}}{7 \pi}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5}{7 \pi}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{5}{7 \pi}\right)$$
=
$$\frac{5}{7 \pi}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = \frac{5}{7 \pi}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = \frac{5}{7 \pi}$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = \frac{\sin{\left(5 \right)}}{7 \pi}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = \frac{\sin{\left(5 \right)}}{7 \pi}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /sin(5*x)\
 lim |--------|
x->0+\ 7*pi*x /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right)$$
 5  
----
7*pi
$$\frac{5}{7 \pi}$$
= 0.227364204416993
     /sin(5*x)\
 lim |--------|
x->0-\ 7*pi*x /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(5 x \right)}}{7 \pi x}\right)$$
 5  
----
7*pi
$$\frac{5}{7 \pi}$$
= 0.227364204416993
= 0.227364204416993
Rapid solution [src]
 5  
----
7*pi
$$\frac{5}{7 \pi}$$
Numerical answer [src]
0.227364204416993
0.227364204416993
The graph
Limit of the function sin(5*x)/(7*pi*x)