Mister Exam

Other calculators:


(sin(x)+sin(3*x))/(10*x)

Limit of the function (sin(x)+sin(3*x))/(10*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(x) + sin(3*x)\
 lim |-----------------|
x->0+\       10*x      /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right)$$
Limit((sin(x) + sin(3*x))/((10*x)), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(10 x\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\sin{\left(x \right)} + \sin{\left(3 x \right)}\right)}{\frac{d}{d x} 10 x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{10} + \frac{3 \cos{\left(3 x \right)}}{10}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\cos{\left(x \right)}}{10} + \frac{3 \cos{\left(3 x \right)}}{10}\right)$$
=
$$\frac{2}{5}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
2/5
$$\frac{2}{5}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right) = \frac{2}{5}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right) = \frac{2}{5}$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right) = \frac{\sin{\left(3 \right)}}{10} + \frac{\sin{\left(1 \right)}}{10}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right) = \frac{\sin{\left(3 \right)}}{10} + \frac{\sin{\left(1 \right)}}{10}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /sin(x) + sin(3*x)\
 lim |-----------------|
x->0+\       10*x      /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right)$$
2/5
$$\frac{2}{5}$$
= 0.4
     /sin(x) + sin(3*x)\
 lim |-----------------|
x->0-\       10*x      /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(x \right)} + \sin{\left(3 x \right)}}{10 x}\right)$$
2/5
$$\frac{2}{5}$$
= 0.4
= 0.4
Numerical answer [src]
0.4
0.4
The graph
Limit of the function (sin(x)+sin(3*x))/(10*x)