Mister Exam

Other calculators:


1/sin(x)

Limit of the function 1/sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1   
 lim ------
x->0+sin(x)
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}}$$
Limit(1/sin(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \frac{1}{\sin{\left(x \right)}} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}} = \infty$$
$$\lim_{x \to \infty} \frac{1}{\sin{\left(x \right)}} = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-} \frac{1}{\sin{\left(x \right)}} = \frac{1}{\sin{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\sin{\left(x \right)}} = \frac{1}{\sin{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\sin{\left(x \right)}} = \left\langle -\infty, \infty\right\rangle$$
More at x→-oo
One‐sided limits [src]
       1   
 lim ------
x->0+sin(x)
$$\lim_{x \to 0^+} \frac{1}{\sin{\left(x \right)}}$$
oo
$$\infty$$
= 151.001103758407
       1   
 lim ------
x->0-sin(x)
$$\lim_{x \to 0^-} \frac{1}{\sin{\left(x \right)}}$$
-oo
$$-\infty$$
= -151.001103758407
= -151.001103758407
Numerical answer [src]
151.001103758407
151.001103758407
The graph
Limit of the function 1/sin(x)