Given the equation
$$\frac{1}{\sin{\left(x \right)}} = 0$$
transform
$$\frac{1}{\sin{\left(x \right)}} = 0$$
$$\frac{1}{\sin{\left(x \right)}} = 0$$
Do replacement
$$w = \sin{\left(x \right)}$$
Given the equation:
$$\frac{1}{w} = 0$$
Multiply the equation sides by the denominator w
we get:
False
Move free summands (without w)
from left part to right part, we given:
$$0 = -1$$
This equation has no roots
do backward replacement
$$\sin{\left(x \right)} = w$$
Given the equation
$$\sin{\left(x \right)} = w$$
- this is the simplest trigonometric equation
This equation is transformed to
$$x = 2 \pi n + \operatorname{asin}{\left(w \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi$$
Or
$$x = 2 \pi n + \operatorname{asin}{\left(w \right)}$$
$$x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi$$
, where n - is a integer
substitute w: