Mister Exam

Other calculators:


1/(1+n^2)

Limit of the function 1/(1+n^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1   
 lim ------
n->oo     2
     1 + n 
$$\lim_{n \to \infty} \frac{1}{n^{2} + 1}$$
Limit(1/(1 + n^2), n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty} \frac{1}{n^{2} + 1}$$
Let's divide numerator and denominator by n^2:
$$\lim_{n \to \infty} \frac{1}{n^{2} + 1}$$ =
$$\lim_{n \to \infty}\left(\frac{1}{n^{2} \left(1 + \frac{1}{n^{2}}\right)}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{1}{n^{2} \left(1 + \frac{1}{n^{2}}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u^{2}}{u^{2} + 1}\right)$$
=
$$\frac{0^{2}}{0^{2} + 1} = 0$$

The final answer:
$$\lim_{n \to \infty} \frac{1}{n^{2} + 1} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} \frac{1}{n^{2} + 1} = 0$$
$$\lim_{n \to 0^-} \frac{1}{n^{2} + 1} = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+} \frac{1}{n^{2} + 1} = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-} \frac{1}{n^{2} + 1} = \frac{1}{2}$$
More at n→1 from the left
$$\lim_{n \to 1^+} \frac{1}{n^{2} + 1} = \frac{1}{2}$$
More at n→1 from the right
$$\lim_{n \to -\infty} \frac{1}{n^{2} + 1} = 0$$
More at n→-oo
The graph
Limit of the function 1/(1+n^2)