Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-3*e^(4*x)-2*e^(-x)+5*e^(2*x))/(-4*sqrt(1+5*x)+4*cos(3*x)+5*sin(2*x))
Limit of (2+x^2+3*x)/(2+2*x^2+5*x)
Limit of 1+(4/3)^n
Limit of (1+n)^2/(2*n^2)
Graphing y =
:
1/(1+e^(-x))
Derivative of
:
1/(1+e^(-x))
Integral of d{x}
:
1/(1+e^(-x))
Identical expressions
one /(one +e^(-x))
1 divide by (1 plus e to the power of ( minus x))
one divide by (one plus e to the power of ( minus x))
1/(1+e(-x))
1/1+e-x
1/1+e^-x
1 divide by (1+e^(-x))
Similar expressions
1/(1-e^(-x))
1/(1+e^(x))
Limit of the function
/
1/(1+e^(-x))
Limit of the function 1/(1+e^(-x))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ------- x->-oo -x 1 + E
$$\lim_{x \to -\infty} \frac{1}{1 + e^{- x}}$$
Limit(1/(1 + E^(-x)), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty} \frac{1}{1 + e^{- x}} = 0$$
$$\lim_{x \to \infty} \frac{1}{1 + e^{- x}} = 1$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{1 + e^{- x}} = \frac{1}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{1 + e^{- x}} = \frac{1}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{1 + e^{- x}} = \frac{e}{1 + e}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{1 + e^{- x}} = \frac{e}{1 + e}$$
More at x→1 from the right
The graph