Mister Exam

Other calculators


1/(1+e^(-x))

Integral of 1/(1+e^(-x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |       1      
 |  1*------- dx
 |         -x   
 |    1 + e     
 |              
/               
0               
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{1 + e^{- x}}\, dx$$
Integral(1/(1 + E^(-x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                              
 |                                               
 |      1                /   -x\      /       -x\
 | 1*------- dx = C - log\2*e  / + log\2 + 2*e  /
 |        -x                                     
 |   1 + e                                       
 |                                               
/                                                
$$\int 1 \cdot \frac{1}{1 + e^{- x}}\, dx = C + \log{\left(2 + 2 e^{- x} \right)} - \log{\left(2 e^{- x} \right)}$$
The graph
The answer [src]
                /     -1\
1 - log(2) + log\1 + e  /
$$- \log{\left(2 \right)} + \log{\left(e^{-1} + 1 \right)} + 1$$
=
=
                /     -1\
1 - log(2) + log\1 + e  /
$$- \log{\left(2 \right)} + \log{\left(e^{-1} + 1 \right)} + 1$$
Numerical answer [src]
0.620114506958278
0.620114506958278
The graph
Integral of 1/(1+e^(-x)) dx

    Use the examples entering the upper and lower limits of integration.