Mister Exam

Other calculators


1/(1+e^(-x))

Derivative of 1/(1+e^(-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1   
-------
     -x
1 + E  
$$\frac{1}{1 + e^{- x}}$$
1/(1 + E^(-x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of is itself.

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    -x    
   e      
----------
         2
/     -x\ 
\1 + E  / 
$$\frac{e^{- x}}{\left(1 + e^{- x}\right)^{2}}$$
The second derivative [src]
/         -x \    
|      2*e   |  -x
|-1 + -------|*e  
|          -x|    
\     1 + e  /    
------------------
             2    
    /     -x\     
    \1 + e  /     
$$\frac{\left(-1 + \frac{2 e^{- x}}{1 + e^{- x}}\right) e^{- x}}{\left(1 + e^{- x}\right)^{2}}$$
The third derivative [src]
/        -x        -2*x  \    
|     6*e       6*e      |  -x
|1 - ------- + ----------|*e  
|         -x            2|    
|    1 + e     /     -x\ |    
\              \1 + e  / /    
------------------------------
                   2          
          /     -x\           
          \1 + e  /           
$$\frac{\left(1 - \frac{6 e^{- x}}{1 + e^{- x}} + \frac{6 e^{- 2 x}}{\left(1 + e^{- x}\right)^{2}}\right) e^{- x}}{\left(1 + e^{- x}\right)^{2}}$$
The graph
Derivative of 1/(1+e^(-x))