Mister Exam

Other calculators:


1/(1-x^3)

Limit of the function 1/(1-x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
       1   
 lim ------
x->1+     3
     1 - x 
$$\lim_{x \to 1^+} \frac{1}{1 - x^{3}}$$
Limit(1/(1 - x^3), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} \frac{1}{1 - x^{3}} = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{1 - x^{3}} = -\infty$$
$$\lim_{x \to \infty} \frac{1}{1 - x^{3}} = 0$$
More at x→oo
$$\lim_{x \to 0^-} \frac{1}{1 - x^{3}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{1 - x^{3}} = 1$$
More at x→0 from the right
$$\lim_{x \to -\infty} \frac{1}{1 - x^{3}} = 0$$
More at x→-oo
One‐sided limits [src]
       1   
 lim ------
x->1+     3
     1 - x 
$$\lim_{x \to 1^+} \frac{1}{1 - x^{3}}$$
-oo
$$-\infty$$
= -50.0014668080224
       1   
 lim ------
x->1-     3
     1 - x 
$$\lim_{x \to 1^-} \frac{1}{1 - x^{3}}$$
oo
$$\infty$$
= 50.6681432208503
= 50.6681432208503
Numerical answer [src]
-50.0014668080224
-50.0014668080224
The graph
Limit of the function 1/(1-x^3)