Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+3*x)^(5/x)
Limit of x^2/(-2+sqrt(4+x^2))
Limit of ((5+x^2-6*x)/(5+x^2-5*x))^(2+3*x)
Limit of (2+x^2+3*x)/(-4+x^2)
Derivative of
:
1/(1-x)
Graphing y =
:
1/(1-x)
Integral of d{x}
:
1/(1-x)
Identical expressions
one /(one -x)
1 divide by (1 minus x)
one divide by (one minus x)
1/1-x
1 divide by (1-x)
Similar expressions
acot(1/(1-x^2))
1/(1+e^(1/(1-x^2)))
x^(1/(1-x^2))
1/(1+x)
Limit of the function
/
1/(1-x)
Limit of the function 1/(1-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim ----- x->oo1 - x
$$\lim_{x \to \infty} \frac{1}{1 - x}$$
Limit(1/(1 - x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty} \frac{1}{1 - x}$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty} \frac{1}{1 - x}$$ =
$$\lim_{x \to \infty}\left(\frac{1}{x \left(-1 + \frac{1}{x}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1}{x \left(-1 + \frac{1}{x}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u}{u - 1}\right)$$
=
$$\frac{0}{-1} = 0$$
The final answer:
$$\lim_{x \to \infty} \frac{1}{1 - x} = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{1 - x} = 0$$
$$\lim_{x \to 0^-} \frac{1}{1 - x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{1 - x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{1 - x} = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{1 - x} = -\infty$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{1 - x} = 0$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph