Mister Exam

Other calculators


1/(1-x)

Integral of 1/(1-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |    1     
 |  ----- dx
 |  1 - x   
 |          
/           
0           
0111xdx\int\limits_{0}^{1} \frac{1}{1 - x}\, dx
Integral(1/(1 - x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=1xu = 1 - x.

      Then let du=dxdu = - dx and substitute du- du:

      (1u)du\int \left(- \frac{1}{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=1udu\int \frac{1}{u}\, du = - \int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: log(u)- \log{\left(u \right)}

      Now substitute uu back in:

      log(1x)- \log{\left(1 - x \right)}

    Method #2

    1. Rewrite the integrand:

      11x=1x1\frac{1}{1 - x} = - \frac{1}{x - 1}

    2. The integral of a constant times a function is the constant times the integral of the function:

      (1x1)dx=1x1dx\int \left(- \frac{1}{x - 1}\right)\, dx = - \int \frac{1}{x - 1}\, dx

      1. Let u=x1u = x - 1.

        Then let du=dxdu = dx and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(x1)\log{\left(x - 1 \right)}

      So, the result is: log(x1)- \log{\left(x - 1 \right)}

    Method #3

    1. Rewrite the integrand:

      11x=1x1\frac{1}{1 - x} = - \frac{1}{x - 1}

    2. The integral of a constant times a function is the constant times the integral of the function:

      (1x1)dx=1x1dx\int \left(- \frac{1}{x - 1}\right)\, dx = - \int \frac{1}{x - 1}\, dx

      1. Let u=x1u = x - 1.

        Then let du=dxdu = dx and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(x1)\log{\left(x - 1 \right)}

      So, the result is: log(x1)- \log{\left(x - 1 \right)}

  2. Add the constant of integration:

    log(1x)+constant- \log{\left(1 - x \right)}+ \mathrm{constant}


The answer is:

log(1x)+constant- \log{\left(1 - x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                         
 |                          
 |   1                      
 | ----- dx = C - log(1 - x)
 | 1 - x                    
 |                          
/                           
11xdx=Clog(1x)\int \frac{1}{1 - x}\, dx = C - \log{\left(1 - x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010000
The answer [src]
oo + pi*I
+iπ\infty + i \pi
=
=
oo + pi*I
+iπ\infty + i \pi
oo + pi*i
Numerical answer [src]
44.0909567862195
44.0909567862195
The graph
Integral of 1/(1-x) dx

    Use the examples entering the upper and lower limits of integration.