Mister Exam

Other calculators:


((1+x)/(1+2*x))^x

Limit of the function ((1+x)/(1+2*x))^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
              x
     / 1 + x \ 
 lim |-------| 
x->oo\1 + 2*x/ 
$$\lim_{x \to \infty} \left(\frac{x + 1}{2 x + 1}\right)^{x}$$
Limit(((1 + x)/(1 + 2*x))^x, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \left(\frac{x + 1}{2 x + 1}\right)^{x} = 0$$
$$\lim_{x \to 0^-} \left(\frac{x + 1}{2 x + 1}\right)^{x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(\frac{x + 1}{2 x + 1}\right)^{x} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left(\frac{x + 1}{2 x + 1}\right)^{x} = \frac{2}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(\frac{x + 1}{2 x + 1}\right)^{x} = \frac{2}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(\frac{x + 1}{2 x + 1}\right)^{x} = \infty$$
More at x→-oo
The graph
Limit of the function ((1+x)/(1+2*x))^x