$$\lim_{x \to -\infty}\left(1 \cdot \frac{1}{9 - x^{2}}\right) = 0$$ $$\lim_{x \to \infty}\left(1 \cdot \frac{1}{9 - x^{2}}\right) = 0$$ More at x→oo $$\lim_{x \to 0^-}\left(1 \cdot \frac{1}{9 - x^{2}}\right) = \frac{1}{9}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(1 \cdot \frac{1}{9 - x^{2}}\right) = \frac{1}{9}$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(1 \cdot \frac{1}{9 - x^{2}}\right) = \frac{1}{8}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(1 \cdot \frac{1}{9 - x^{2}}\right) = \frac{1}{8}$$ More at x→1 from the right