1 / | | 1 | ------ dx | 2 | 9 - x | / 0
Integral(1/(9 - x^2), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), False), (ArccothRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), x**2 > 9), (ArctanhRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), x**2 < 9)], context=1/(9 - x**2), symbol=x)
Add the constant of integration:
The answer is:
// /x\ \
||acoth|-| |
/ || \3/ 2 |
| ||-------- for x > 9|
| 1 || 3 |
| ------ dx = C + |< |
| 2 || /x\ |
| 9 - x ||atanh|-| |
| || \3/ 2 |
/ ||-------- for x < 9|
\\ 3 /
log(2) log(4)
- ------ + ------
6 6
=
log(2) log(4)
- ------ + ------
6 6
-log(2)/6 + log(4)/6
Use the examples entering the upper and lower limits of integration.