Integral of 1/(9-x^2) dx
The solution
Detail solution
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), False), (ArccothRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), x**2 > 9), (ArctanhRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), x**2 < 9)], context=1/(9 - x**2), symbol=x)
-
Add the constant of integration:
⎩⎨⎧3acoth(3x)3atanh(3x)forx2>9forx2<9+constant
The answer is:
⎩⎨⎧3acoth(3x)3atanh(3x)forx2>9forx2<9+constant
The answer (Indefinite)
[src]
// /x\ \
||acoth|-| |
/ || \3/ 2 |
| ||-------- for x > 9|
| 1 || 3 |
| ------ dx = C + |< |
| 2 || /x\ |
| 9 - x ||atanh|-| |
| || \3/ 2 |
/ ||-------- for x < 9|
\\ 3 /
∫9−x21dx=C+⎩⎨⎧3acoth(3x)3atanh(3x)forx2>9forx2<9
The graph
log(2) log(4)
- ------ + ------
6 6
−6log(2)+6log(4)
=
log(2) log(4)
- ------ + ------
6 6
−6log(2)+6log(4)
Use the examples entering the upper and lower limits of integration.