1 / | | 1 | ------ dx | 2 | 9 - x | / 0
Integral(1/(9 - x^2), (x, 0, 1))
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), False), (ArccothRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), x**2 > 9), (ArctanhRule(a=1, b=-1, c=9, context=1/(9 - x**2), symbol=x), x**2 < 9)], context=1/(9 - x**2), symbol=x)
Add the constant of integration:
The answer is:
// /x\ \ ||acoth|-| | / || \3/ 2 | | ||-------- for x > 9| | 1 || 3 | | ------ dx = C + |< | | 2 || /x\ | | 9 - x ||atanh|-| | | || \3/ 2 | / ||-------- for x < 9| \\ 3 /
log(2) log(4) - ------ + ------ 6 6
=
log(2) log(4) - ------ + ------ 6 6
-log(2)/6 + log(4)/6
Use the examples entering the upper and lower limits of integration.