$$\lim_{x \to \infty}\left(\frac{e^{- n x}}{n}\right)$$ $$\lim_{x \to 0^-}\left(\frac{e^{- n x}}{n}\right) = \frac{1}{n}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{e^{- n x}}{n}\right) = \frac{1}{n}$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{e^{- n x}}{n}\right) = \frac{e^{- n}}{n}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{e^{- n x}}{n}\right) = \frac{e^{- n}}{n}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{e^{- n x}}{n}\right)$$ More at x→-oo