Mister Exam

Other calculators:

Limit of the function e^(-n*x)/n

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -n*x\
     |E    |
 lim |-----|
x->oo\  n  /
$$\lim_{x \to \infty}\left(\frac{e^{- n x}}{n}\right)$$
Limit(E^((-n)*x)/n, x, oo, dir='-')
Rapid solution [src]
None
None
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{e^{- n x}}{n}\right)$$
$$\lim_{x \to 0^-}\left(\frac{e^{- n x}}{n}\right) = \frac{1}{n}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{- n x}}{n}\right) = \frac{1}{n}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{e^{- n x}}{n}\right) = \frac{e^{- n}}{n}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{- n x}}{n}\right) = \frac{e^{- n}}{n}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{- n x}}{n}\right)$$
More at x→-oo