Mister Exam

Other calculators:


(-1+x)/(x+x^2)

Limit of the function (-1+x)/(x+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 + x\
 lim |------|
x->1+|     2|
     \x + x /
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)$$
Limit((-1 + x)/(x + x^2), x, 1)
Detail solution
Let's take the limit
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)$$
transform
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x \left(x + 1\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x \left(x + 1\right)}\right) = $$
$$\frac{-1 + 1}{1 + 1} = $$
= 0

The final answer:
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-}\left(\frac{x - 1}{x^{2} + x}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{x - 1}{x^{2} + x}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x - 1}{x^{2} + x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x - 1}{x^{2} + x}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to -\infty}\left(\frac{x - 1}{x^{2} + x}\right) = 0$$
More at x→-oo
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
     /-1 + x\
 lim |------|
x->1+|     2|
     \x + x /
$$\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)$$
0
$$0$$
= 7.27864599832406e-29
     /-1 + x\
 lim |------|
x->1-|     2|
     \x + x /
$$\lim_{x \to 1^-}\left(\frac{x - 1}{x^{2} + x}\right)$$
0
$$0$$
= 6.05462511935933e-36
= 6.05462511935933e-36
Numerical answer [src]
7.27864599832406e-29
7.27864599832406e-29
The graph
Limit of the function (-1+x)/(x+x^2)