Mister Exam

Other calculators:


(-1+x)/(x+x^2)

Limit of the function (-1+x)/(x+x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 + x\
 lim |------|
x->1+|     2|
     \x + x /
limx1+(x1x2+x)\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)
Limit((-1 + x)/(x + x^2), x, 1)
Detail solution
Let's take the limit
limx1+(x1x2+x)\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)
transform
limx1+(x1x2+x)\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)
=
limx1+(x1x(x+1))\lim_{x \to 1^+}\left(\frac{x - 1}{x \left(x + 1\right)}\right)
=
limx1+(x1x(x+1))=\lim_{x \to 1^+}\left(\frac{x - 1}{x \left(x + 1\right)}\right) =
1+11+1=\frac{-1 + 1}{1 + 1} =
= 0

The final answer:
limx1+(x1x2+x)=0\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right) = 0
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0-1.5-1.0-0.52.00.00.51.01.5-250250
Other limits x→0, -oo, +oo, 1
limx1(x1x2+x)=0\lim_{x \to 1^-}\left(\frac{x - 1}{x^{2} + x}\right) = 0
More at x→1 from the left
limx1+(x1x2+x)=0\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right) = 0
limx(x1x2+x)=0\lim_{x \to \infty}\left(\frac{x - 1}{x^{2} + x}\right) = 0
More at x→oo
limx0(x1x2+x)=\lim_{x \to 0^-}\left(\frac{x - 1}{x^{2} + x}\right) = \infty
More at x→0 from the left
limx0+(x1x2+x)=\lim_{x \to 0^+}\left(\frac{x - 1}{x^{2} + x}\right) = -\infty
More at x→0 from the right
limx(x1x2+x)=0\lim_{x \to -\infty}\left(\frac{x - 1}{x^{2} + x}\right) = 0
More at x→-oo
Rapid solution [src]
0
00
One‐sided limits [src]
     /-1 + x\
 lim |------|
x->1+|     2|
     \x + x /
limx1+(x1x2+x)\lim_{x \to 1^+}\left(\frac{x - 1}{x^{2} + x}\right)
0
00
= 7.27864599832406e-29
     /-1 + x\
 lim |------|
x->1-|     2|
     \x + x /
limx1(x1x2+x)\lim_{x \to 1^-}\left(\frac{x - 1}{x^{2} + x}\right)
0
00
= 6.05462511935933e-36
= 6.05462511935933e-36
Numerical answer [src]
7.27864599832406e-29
7.27864599832406e-29
The graph
Limit of the function (-1+x)/(x+x^2)