Mister Exam

Other calculators:


|x|/x

Limit of the function |x|/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /|x|\
 lim |---|
x->0+\ x /
$$\lim_{x \to 0^+}\left(\frac{\left|{x}\right|}{x}\right)$$
Limit(|x|/x, x, 0)
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     /|x|\
 lim |---|
x->0+\ x /
$$\lim_{x \to 0^+}\left(\frac{\left|{x}\right|}{x}\right)$$
1
$$1$$
= 1.0
     /|x|\
 lim |---|
x->0-\ x /
$$\lim_{x \to 0^-}\left(\frac{\left|{x}\right|}{x}\right)$$
-1
$$-1$$
= -1.0
= -1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\left|{x}\right|}{x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\left|{x}\right|}{x}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\left|{x}\right|}{x}\right) = 1$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\left|{x}\right|}{x}\right) = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\left|{x}\right|}{x}\right) = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\left|{x}\right|}{x}\right) = -1$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function |x|/x