Mister Exam

Other calculators:


sin(|x|)/x

Limit of the function sin(|x|)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(|x|)\
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right)$$
Limit(sin(|x|)/x, x, 0)
The graph
Rapid solution [src]
1
$$1$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right) = \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right) = \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /sin(|x|)\
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right)$$
1
$$1$$
= 1.0
     /sin(|x|)\
 lim |--------|
x->0-\   x    /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\left|{x}\right| \right)}}{x}\right)$$
-1
$$-1$$
= -1.0
= -1.0
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sin(|x|)/x