Mister Exam

Other calculators:


|-1+x|

Limit of the function |-1+x|

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  |-1 + x|
x->-1+        
$$\lim_{x \to -1^+} \left|{x - 1}\right|$$
Limit(|-1 + x|, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim  |-1 + x|
x->-1+        
$$\lim_{x \to -1^+} \left|{x - 1}\right|$$
2
$$2$$
= 2
 lim  |-1 + x|
x->-1-        
$$\lim_{x \to -1^-} \left|{x - 1}\right|$$
2
$$2$$
= 2
= 2
Rapid solution [src]
2
$$2$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-} \left|{x - 1}\right| = 2$$
More at x→-1 from the left
$$\lim_{x \to -1^+} \left|{x - 1}\right| = 2$$
$$\lim_{x \to \infty} \left|{x - 1}\right| = \infty$$
More at x→oo
$$\lim_{x \to 0^-} \left|{x - 1}\right| = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left|{x - 1}\right| = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \left|{x - 1}\right| = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left|{x - 1}\right| = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left|{x - 1}\right| = \infty$$
More at x→-oo
Numerical answer [src]
2.0
2.0
The graph
Limit of the function |-1+x|