Mister Exam

Other calculators:


(-2+sqrt(4+x))/(3*atan(x))

Limit of the function (-2+sqrt(4+x))/(3*atan(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       _______\
     |-2 + \/ 4 + x |
 lim |--------------|
x->0+\  3*atan(x)   /
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right)$$
Limit((-2 + sqrt(4 + x))/((3*atan(x))), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(\sqrt{x + 4} - 2\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+}\left(3 \operatorname{atan}{\left(x \right)}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(\sqrt{x + 4} - 2\right)}{\frac{d}{d x} 3 \operatorname{atan}{\left(x \right)}}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{x^{2}}{3} + \frac{1}{3}}{2 \sqrt{x + 4}}\right)$$
=
$$\lim_{x \to 0^+} \frac{1}{12}$$
=
$$\lim_{x \to 0^+} \frac{1}{12}$$
=
$$\frac{1}{12}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
One‐sided limits [src]
     /       _______\
     |-2 + \/ 4 + x |
 lim |--------------|
x->0+\  3*atan(x)   /
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right)$$
1/12
$$\frac{1}{12}$$
= 0.0833333333333333
     /       _______\
     |-2 + \/ 4 + x |
 lim |--------------|
x->0-\  3*atan(x)   /
$$\lim_{x \to 0^-}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right)$$
1/12
$$\frac{1}{12}$$
= 0.0833333333333333
= 0.0833333333333333
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right) = \frac{1}{12}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right) = \frac{1}{12}$$
$$\lim_{x \to \infty}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right) = \frac{-8 + 4 \sqrt{5}}{3 \pi}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right) = \frac{-8 + 4 \sqrt{5}}{3 \pi}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sqrt{x + 4} - 2}{3 \operatorname{atan}{\left(x \right)}}\right) = - \infty i$$
More at x→-oo
Rapid solution [src]
1/12
$$\frac{1}{12}$$
Numerical answer [src]
0.0833333333333333
0.0833333333333333
The graph
Limit of the function (-2+sqrt(4+x))/(3*atan(x))