Mister Exam

Other calculators:


factorial(x)/x^2

Limit of the function factorial(x)/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x!\
 lim |--|
x->oo| 2|
     \x /
limx(x!x2)\lim_{x \to \infty}\left(\frac{x!}{x^{2}}\right)
Limit(factorial(x)/(x^2), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limxx!=\lim_{x \to \infty} x! = \infty
and limit for the denominator is
limxx2=\lim_{x \to \infty} x^{2} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(x!x2)\lim_{x \to \infty}\left(\frac{x!}{x^{2}}\right)
=
Let's transform the function under the limit a few
limx(x!x2)\lim_{x \to \infty}\left(\frac{x!}{x^{2}}\right)
=
limx(ddxx!ddxx2)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x!}{\frac{d}{d x} x^{2}}\right)
=
limx(Γ(x+1)polygamma(0,x+1)2x)\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{2 x}\right)
=
limx(ddxΓ(x+1)polygamma(0,x+1)ddx2x)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \Gamma\left(x + 1\right) \operatorname{polygamma}{\left(0,x + 1 \right)}}{\frac{d}{d x} 2 x}\right)
=
limx(Γ(x+1)polygamma2(0,x+1)2+Γ(x+1)polygamma(1,x+1)2)\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} + \frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(1,x + 1 \right)}}{2}\right)
=
limx(Γ(x+1)polygamma2(0,x+1)2+Γ(x+1)polygamma(1,x+1)2)\lim_{x \to \infty}\left(\frac{\Gamma\left(x + 1\right) \operatorname{polygamma}^{2}{\left(0,x + 1 \right)}}{2} + \frac{\Gamma\left(x + 1\right) \operatorname{polygamma}{\left(1,x + 1 \right)}}{2}\right)
=
\infty
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
02468-8-6-4-2-1010-100100
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(x!x2)=\lim_{x \to \infty}\left(\frac{x!}{x^{2}}\right) = \infty
limx0(x!x2)=\lim_{x \to 0^-}\left(\frac{x!}{x^{2}}\right) = \infty
More at x→0 from the left
limx0+(x!x2)=\lim_{x \to 0^+}\left(\frac{x!}{x^{2}}\right) = \infty
More at x→0 from the right
limx1(x!x2)=1\lim_{x \to 1^-}\left(\frac{x!}{x^{2}}\right) = 1
More at x→1 from the left
limx1+(x!x2)=1\lim_{x \to 1^+}\left(\frac{x!}{x^{2}}\right) = 1
More at x→1 from the right
limx(x!x2)=0\lim_{x \to -\infty}\left(\frac{x!}{x^{2}}\right) = 0
More at x→-oo
The graph
Limit of the function factorial(x)/x^2