Mister Exam

Other calculators:


(1+4/x)^(3*x)

Limit of the function (1+4/x)^(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            3*x
     /    4\   
 lim |1 + -|   
x->oo\    x/   
limx(1+4x)3x\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^{3 x}
Limit((1 + 4/x)^(3*x), x, oo, dir='-')
Detail solution
Let's take the limit
limx(1+4x)3x\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^{3 x}
transform
do replacement
u=x4u = \frac{x}{4}
then
limx(1+4x)3x\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^{3 x} =
=
limu(1+1u)12u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{12 u}
=
limu(1+1u)12u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{12 u}
=
((limu(1+1u)u))12\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{12}
The limit
limu(1+1u)u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu(1+1u)u))12=e12\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{12} = e^{12}

The final answer:
limx(1+4x)3x=e12\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^{3 x} = e^{12}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101002000000000000000000
Rapid solution [src]
 12
e  
e12e^{12}
Other limits x→0, -oo, +oo, 1
limx(1+4x)3x=e12\lim_{x \to \infty} \left(1 + \frac{4}{x}\right)^{3 x} = e^{12}
limx0(1+4x)3x=1\lim_{x \to 0^-} \left(1 + \frac{4}{x}\right)^{3 x} = 1
More at x→0 from the left
limx0+(1+4x)3x=1\lim_{x \to 0^+} \left(1 + \frac{4}{x}\right)^{3 x} = 1
More at x→0 from the right
limx1(1+4x)3x=125\lim_{x \to 1^-} \left(1 + \frac{4}{x}\right)^{3 x} = 125
More at x→1 from the left
limx1+(1+4x)3x=125\lim_{x \to 1^+} \left(1 + \frac{4}{x}\right)^{3 x} = 125
More at x→1 from the right
limx(1+4x)3x=e12\lim_{x \to -\infty} \left(1 + \frac{4}{x}\right)^{3 x} = e^{12}
More at x→-oo
The graph
Limit of the function (1+4/x)^(3*x)