Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 1/(x*(3+x))
Limit of 1+x*log(2+x)
Limit of ((1+x^2)^(1/3)-x*cot(x))/(x*sin(x))
Limit of (1+x^2)^(5/x)
Graphing y =
:
-2-x
Derivative of
:
-2-x
Identical expressions
- two -x
minus 2 minus x
minus two minus x
Similar expressions
-2+x
1+2^x-2^(-x)
2-x
(1/x-2^(-x))^(1/x)
(2^x-2^(-x))/(2^x+3*2^(-x))
Limit of the function
/
-2-x
Limit of the function -2-x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-2 - x) x->-8+
$$\lim_{x \to -8^+}\left(- x - 2\right)$$
Limit(-2 - x, x, -8)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -8^-}\left(- x - 2\right) = 6$$
More at x→-8 from the left
$$\lim_{x \to -8^+}\left(- x - 2\right) = 6$$
$$\lim_{x \to \infty}\left(- x - 2\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x - 2\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x - 2\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x - 2\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x - 2\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x - 2\right) = \infty$$
More at x→-oo
One‐sided limits
[src]
lim (-2 - x) x->-8+
$$\lim_{x \to -8^+}\left(- x - 2\right)$$
6
$$6$$
= 6.0
lim (-2 - x) x->-8-
$$\lim_{x \to -8^-}\left(- x - 2\right)$$
6
$$6$$
= 6.0
= 6.0
Rapid solution
[src]
6
$$6$$
Expand and simplify
Numerical answer
[src]
6.0
6.0
The graph