Mister Exam

Limit of the function -2-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (-2 - x)
x->-8+        
$$\lim_{x \to -8^+}\left(- x - 2\right)$$
Limit(-2 - x, x, -8)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -8^-}\left(- x - 2\right) = 6$$
More at x→-8 from the left
$$\lim_{x \to -8^+}\left(- x - 2\right) = 6$$
$$\lim_{x \to \infty}\left(- x - 2\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- x - 2\right) = -2$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x - 2\right) = -2$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- x - 2\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x - 2\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x - 2\right) = \infty$$
More at x→-oo
One‐sided limits [src]
 lim  (-2 - x)
x->-8+        
$$\lim_{x \to -8^+}\left(- x - 2\right)$$
6
$$6$$
= 6.0
 lim  (-2 - x)
x->-8-        
$$\lim_{x \to -8^-}\left(- x - 2\right)$$
6
$$6$$
= 6.0
= 6.0
Rapid solution [src]
6
$$6$$
Numerical answer [src]
6.0
6.0
The graph
Limit of the function -2-x