Mister Exam

Other calculators:


(1+x^2)^(5/x)

Limit of the function (1+x^2)^(5/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
             5
             -
             x
     /     2\ 
 lim \1 + x / 
x->0+         
$$\lim_{x \to 0^+} \left(x^{2} + 1\right)^{\frac{5}{x}}$$
Limit((1 + x^2)^(5/x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+} \left(x^{2} + 1\right)^{\frac{5}{x}}$$
transform
do replacement
$$u = \frac{1}{x^{2}}$$
then
$$\lim_{x \to 0^+} \left(1 + \frac{1}{\frac{1}{x^{2}}}\right)^{\frac{5}{x}}$$ =
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- \frac{5}{\sqrt{\frac{1}{u}}}}$$
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- \frac{5}{\sqrt{\frac{1}{u}}}}$$
=
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{- \frac{5}{u \sqrt{\frac{1}{u}}}}$$
The limit
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{- \frac{5}{u \sqrt{\frac{1}{u}}}} = e^{- \frac{5}{u \sqrt{\frac{1}{u}}}}$$

The final answer:
$$\lim_{x \to 0^+} \left(x^{2} + 1\right)^{\frac{5}{x}} = 1$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
             5
             -
             x
     /     2\ 
 lim \1 + x / 
x->0+         
$$\lim_{x \to 0^+} \left(x^{2} + 1\right)^{\frac{5}{x}}$$
1
$$1$$
= 1.0
             5
             -
             x
     /     2\ 
 lim \1 + x / 
x->0-         
$$\lim_{x \to 0^-} \left(x^{2} + 1\right)^{\frac{5}{x}}$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(x^{2} + 1\right)^{\frac{5}{x}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(x^{2} + 1\right)^{\frac{5}{x}} = 1$$
$$\lim_{x \to \infty} \left(x^{2} + 1\right)^{\frac{5}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} \left(x^{2} + 1\right)^{\frac{5}{x}} = 32$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(x^{2} + 1\right)^{\frac{5}{x}} = 32$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(x^{2} + 1\right)^{\frac{5}{x}} = 1$$
More at x→-oo
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.0
1.0
The graph
Limit of the function (1+x^2)^(5/x)