Mister Exam

Other calculators:


1+x*log(2+x)

Limit of the function 1+x*log(2+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (1 + x*log(2 + x))
x->-2+                  
$$\lim_{x \to -2^+}\left(x \log{\left(x + 2 \right)} + 1\right)$$
Limit(1 + x*log(2 + x), x, -2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -2^-}\left(x \log{\left(x + 2 \right)} + 1\right) = \infty$$
More at x→-2 from the left
$$\lim_{x \to -2^+}\left(x \log{\left(x + 2 \right)} + 1\right) = \infty$$
$$\lim_{x \to \infty}\left(x \log{\left(x + 2 \right)} + 1\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(x \log{\left(x + 2 \right)} + 1\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x \log{\left(x + 2 \right)} + 1\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x \log{\left(x + 2 \right)} + 1\right) = 1 + \log{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x \log{\left(x + 2 \right)} + 1\right) = 1 + \log{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x \log{\left(x + 2 \right)} + 1\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
 lim  (1 + x*log(2 + x))
x->-2+                  
$$\lim_{x \to -2^+}\left(x \log{\left(x + 2 \right)} + 1\right)$$
oo
$$\infty$$
= 18.7040401084166
 lim  (1 + x*log(2 + x))
x->-2-                  
$$\lim_{x \to -2^-}\left(x \log{\left(x + 2 \right)} + 1\right)$$
oo
$$\infty$$
= (18.6966614522551 - 6.3004815912505j)
= (18.6966614522551 - 6.3004815912505j)
Numerical answer [src]
18.7040401084166
18.7040401084166
The graph
Limit of the function 1+x*log(2+x)