$$\lim_{x \to -2^-}\left(x \log{\left(x + 2 \right)} + 1\right) = \infty$$
More at x→-2 from the left$$\lim_{x \to -2^+}\left(x \log{\left(x + 2 \right)} + 1\right) = \infty$$
$$\lim_{x \to \infty}\left(x \log{\left(x + 2 \right)} + 1\right) = \infty$$
More at x→oo$$\lim_{x \to 0^-}\left(x \log{\left(x + 2 \right)} + 1\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x \log{\left(x + 2 \right)} + 1\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(x \log{\left(x + 2 \right)} + 1\right) = 1 + \log{\left(3 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x \log{\left(x + 2 \right)} + 1\right) = 1 + \log{\left(3 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x \log{\left(x + 2 \right)} + 1\right) = -\infty$$
More at x→-oo