$$\lim_{x \to \infty} \frac{1}{x \left(x + 3\right)} = 0$$ $$\lim_{x \to 0^-} \frac{1}{x \left(x + 3\right)} = -\infty$$ More at x→0 from the left $$\lim_{x \to 0^+} \frac{1}{x \left(x + 3\right)} = \infty$$ More at x→0 from the right $$\lim_{x \to 1^-} \frac{1}{x \left(x + 3\right)} = \frac{1}{4}$$ More at x→1 from the left $$\lim_{x \to 1^+} \frac{1}{x \left(x + 3\right)} = \frac{1}{4}$$ More at x→1 from the right $$\lim_{x \to -\infty} \frac{1}{x \left(x + 3\right)} = 0$$ More at x→-oo