Mister Exam

Other calculators:


(-1)^n/sqrt(n)

Limit of the function (-1)^n/sqrt(n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    n\
     |(-1) |
 lim |-----|
n->oo|  ___|
     \\/ n /
limn((1)nn)\lim_{n \to \infty}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right)
Limit((-1)^n/(sqrt(n)), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.310.33
Rapid solution [src]
None
None
Other limits n→0, -oo, +oo, 1
limn((1)nn)\lim_{n \to \infty}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right)
limn0((1)nn)=i\lim_{n \to 0^-}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right) = - \infty i
More at n→0 from the left
limn0+((1)nn)=\lim_{n \to 0^+}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right) = \infty
More at n→0 from the right
limn1((1)nn)=1\lim_{n \to 1^-}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right) = -1
More at n→1 from the left
limn1+((1)nn)=1\lim_{n \to 1^+}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right) = -1
More at n→1 from the right
limn((1)nn)\lim_{n \to -\infty}\left(\frac{\left(-1\right)^{n}}{\sqrt{n}}\right)
More at n→-oo
The graph
Limit of the function (-1)^n/sqrt(n)