Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((5+6*x)/(-10+x))^(5*x)
Limit of log(1+x)/log(2+x)
Limit of (5+3*x)/(7+2*x)
Limit of 2^x*2^(-1-x)
Identical expressions
log(six)
logarithm of (6)
logarithm of (six)
log6
Similar expressions
x*(-log(6+x)+log(x))
log(6+x^2+2*x)
x*(-log(-1+x)+log(6+x))
x^2*log((6+x^2)/(1+x^2))^((5+x)/x)
Limit of the function
/
log(6)
Limit of the function log(6)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim log(6) x->oo
lim
x
→
∞
log
(
6
)
\lim_{x \to \infty} \log{\left(6 \right)}
x
→
∞
lim
lo
g
(
6
)
Limit(log(6), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-0.010
-0.008
-0.006
-0.004
-0.002
0.010
0.000
0.002
0.004
0.006
0.008
0.00
Plot the graph
Rapid solution
[src]
log(6)
log
(
6
)
\log{\left(6 \right)}
lo
g
(
6
)
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
log
(
6
)
=
log
(
6
)
\lim_{x \to \infty} \log{\left(6 \right)} = \log{\left(6 \right)}
x
→
∞
lim
lo
g
(
6
)
=
lo
g
(
6
)
lim
x
→
0
−
log
(
6
)
=
log
(
6
)
\lim_{x \to 0^-} \log{\left(6 \right)} = \log{\left(6 \right)}
x
→
0
−
lim
lo
g
(
6
)
=
lo
g
(
6
)
More at x→0 from the left
lim
x
→
0
+
log
(
6
)
=
log
(
6
)
\lim_{x \to 0^+} \log{\left(6 \right)} = \log{\left(6 \right)}
x
→
0
+
lim
lo
g
(
6
)
=
lo
g
(
6
)
More at x→0 from the right
lim
x
→
1
−
log
(
6
)
=
log
(
6
)
\lim_{x \to 1^-} \log{\left(6 \right)} = \log{\left(6 \right)}
x
→
1
−
lim
lo
g
(
6
)
=
lo
g
(
6
)
More at x→1 from the left
lim
x
→
1
+
log
(
6
)
=
log
(
6
)
\lim_{x \to 1^+} \log{\left(6 \right)} = \log{\left(6 \right)}
x
→
1
+
lim
lo
g
(
6
)
=
lo
g
(
6
)
More at x→1 from the right
lim
x
→
−
∞
log
(
6
)
=
log
(
6
)
\lim_{x \to -\infty} \log{\left(6 \right)} = \log{\left(6 \right)}
x
→
−
∞
lim
lo
g
(
6
)
=
lo
g
(
6
)
More at x→-oo
The graph