Mister Exam

# Limit of the function log(log(x))

at
v

from to

### The solution

You have entered [src]
 lim  log(log(x))
x->-oo           
$$\lim_{x \to -\infty} \log{\left(\log{\left(x \right)} \right)}$$
Limit(log(log(x)), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty} \log{\left(\log{\left(x \right)} \right)} = \infty$$
$$\lim_{x \to \infty} \log{\left(\log{\left(x \right)} \right)} = \infty$$
More at x→oo
$$\lim_{x \to 0^-} \log{\left(\log{\left(x \right)} \right)} = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(\log{\left(x \right)} \right)} = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \log{\left(\log{\left(x \right)} \right)} = -\infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(\log{\left(x \right)} \right)} = -\infty$$
More at x→1 from the right
The graph