Mister Exam

Other calculators:


sin(sqrt(x))/sqrt(x)

Limit of the function sin(sqrt(x))/sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   /  ___\\
     |sin\\/ x /|
 lim |----------|
x->0+|    ___   |
     \  \/ x    /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right)$$
Limit(sin(sqrt(x))/(sqrt(x)), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     /   /  ___\\
     |sin\\/ x /|
 lim |----------|
x->0+|    ___   |
     \  \/ x    /
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right)$$
1
$$1$$
= 1
     /   /  ___\\
     |sin\\/ x /|
 lim |----------|
x->0-|    ___   |
     \  \/ x    /
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right)$$
1
$$1$$
= 1
= 1
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right) = \sin{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right) = \sin{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\right) = \infty$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function sin(sqrt(x))/sqrt(x)